Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Am J Infect Control ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692307

ABSTRACT

BACKGROUND: Understanding the epidemiology of carbapenem-resistant A. baumannii complex (CRAB) and the patients impacted is an important step towards informing better infection prevention and control practices and improving public health response. METHODS: Active, population-based surveillance was conducted for CRAB in 9 U.S. sites from January 1-December 31, 2019. Medical records were reviewed, isolates were collected and characterized including antimicrobial susceptibility testing and whole genome sequencing. RESULTS: Among 136 incident cases in 2019, 66 isolates were collected and characterized; 56.5% were from cases who were male, 54.5% were from persons of Black or African American race with non-Hispanic ethnicity, and the median age was 63.5 years. Most isolates, 77.2%, were isolated from urine, and 50.0% were collected in the outpatient setting; 72.7% of isolates harbored an acquired carbapenemase gene (aCP), predominantly blaOXA-23 or blaOXA-24/40; however, an isolate with blaNDM was identified. The antimicrobial agent with the most in vitro activity was cefiderocol (96.9% of isolates were susceptible). CONCLUSIONS: Our surveillance found that CRAB isolates in the U.S. commonly harbor an aCP, have an antimicrobial susceptibility profile that is defined as difficult-to-treat resistance, and epidemiologically are similar regardless of the presence of an aCP.

2.
Clin Infect Dis ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315890

ABSTRACT

BACKGROUND: Carbapenemase-producing, carbapenem-resistant Pseudomonas aeruginosa (CP-CRPA) are extensively drug resistant bacteria. We investigated the source of a multistate CP-CRPA outbreak. METHODS: Cases were defined as a U.S. patient's first isolation of P. aeruginosa sequence type 1203 with the carbapenemase gene blaVIM-80 and cephalosporinase gene blaGES-9 from any specimen source collected and reported to CDC between January 1, 2022-May 15, 2023. We conducted a 1:1 matched case-control study at the post-acute care facility with the most cases, assessed exposures associated with case status for all case-patients, and tested products for bacterial contamination. RESULTS: We identified 81 case-patients from 18 states, 27 of whom were identified through surveillance cultures. Four (7%) of 54 case-patients with clinical cultures died within 30 days of culture collection, and four (22%) of 18 with eye infections underwent enucleation. In the case-control study, case-patients had increased odds of receiving artificial tears compared to controls (crude matched OR: 5.0, 95% CI: 1.1, 22.8). Overall, artificial tears use was reported by 61 (87%) of 70 case-patients with information; 43 (77%) of 56 case-patients with brand information reported use of Brand A, an imported, preservative-free, over-the-counter (OTC) product. Bacteria isolated from opened and unopened bottles of Brand A were genetically related to patient isolates. FDA inspection of the manufacturing plant identified likely sources of contamination. CONCLUSIONS: A manufactured medical product serving as the vehicle for carbapenemase-producing organisms is unprecedented in the U.S. The clinical impacts from this outbreak underscore the need for improved requirements for U.S. OTC product importers.

3.
Infect Control Hosp Epidemiol ; : 1-8, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38415308

ABSTRACT

BACKGROUND: Emerging multidrug-resistant organisms (MDROs), such as carbapenem-resistant Enterobacterales (CRE), can spread rapidly in a region. Facilities that care for high-acuity patients with longer stays may have a disproportionate impact on this spread. OBJECTIVE: We assessed the impact of implementing preventive interventions, directed at a subset of facilities, on regional prevalence. METHODS: We developed a deterministic compartmental model, parametrized using CRE and patient transfer data. The model included the community and healthcare facilities within a US state. Individuals may be either susceptible or infectious with CRE. Individuals determined to be infectious through admission screening, periodic prevalence surveys (PPSs), or interfacility communication were placed in a state of lower transmissibility if enhanced infection prevention and control (IPC) practices were in place at a facility. RESULTS: Intervention bundles that included PPS and enhanced IPC practices at ventilator-capable skilled nursing facilities (vSNFs) and long-term acute-care hospitals (LTACHs) had the greatest impact on regional prevalence. The benefits of including targeted admission screening in acute-care hospitals, LTACHs, and vSNFs, and improved interfacility communication were more modest. Daily transmissions in each facility type were reduced following the implementation of interventions primarily focused at LTACHs and vSNFs. CONCLUSIONS: Our model suggests that interventions that include screening to limit unrecognized MDRO introduction to, or dispersal from, LTACHs and vSNFs slow regional spread. Interventions that pair detection and enhanced IPC practices within LTACHs and vSNFs may substantially reduce the regional burden.

4.
Infect Control Hosp Epidemiol ; 45(3): 292-301, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38196201

ABSTRACT

OBJECTIVE: We investigated concurrent outbreaks of Pseudomonas aeruginosa carrying blaVIM (VIM-CRPA) and Enterobacterales carrying blaKPC (KPC-CRE) at a long-term acute-care hospital (LTACH A). METHODS: We defined an incident case as the first detection of blaKPC or blaVIM from a patient's clinical cultures or colonization screening test. We reviewed medical records and performed infection control assessments, colonization screening, environmental sampling, and molecular characterization of carbapenemase-producing organisms from clinical and environmental sources by pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. RESULTS: From July 2017 to December 2018, 76 incident cases were identified from 69 case patients: 51 had blaKPC, 11 had blaVIM, and 7 had blaVIM and blaKPC. Also, blaKPC were identified from 7 Enterobacterales, and all blaVIM were P. aeruginosa. We observed gaps in hand hygiene, and we recovered KPC-CRE and VIM-CRPA from drains and toilets. We identified 4 KPC alleles and 2 VIM alleles; 2 KPC alleles were located on plasmids that were identified across multiple Enterobacterales and in both clinical and environmental isolates. CONCLUSIONS: Our response to a single patient colonized with VIM-CRPA and KPC-CRE identified concurrent CPO outbreaks at LTACH A. Epidemiologic and genomic investigations indicated that the observed diversity was due to a combination of multiple introductions of VIM-CRPA and KPC-CRE and to the transfer of carbapenemase genes across different bacteria species and strains. Improved infection control, including interventions that minimized potential spread from wastewater premise plumbing, stopped transmission.


Subject(s)
Bacterial Proteins , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , beta-Lactamases/genetics , Hospitals , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids
5.
Lancet Microbe ; 4(10): e790-e799, 2023 10.
Article in English | MEDLINE | ID: mdl-37716364

ABSTRACT

BACKGROUND: Culture-based studies have shown that acquisition of extended-spectrum ß-lactamase-producing Enterobacterales is common during international travel; however, little is known about the role of the gut microbiome before and during travel, nor about acquisition of other antimicrobial-resistant organisms. We aimed to identify (1) whether the gut microbiome provided colonisation resistance against antimicrobial-resistant organism acquisition, (2) the effect of travel and travel behaviours on the gut microbiome, and (3) the scale and global heterogeneity of antimicrobial-resistant organism acquisition. METHODS: In this metagenomic analysis, participants were recruited at three US travel clinics (Boston, MA; New York, NY; and Salt Lake City, UT) before international travel. Participants had to travel internationally between Dec 8, 2017, and April 30, 2019, and have DNA extractions for stool samples both before and after travel for inclusion. Participants were excluded if they had at least one low coverage sample (<1 million read pairs). Stool samples were collected at home before and after travel, sent to a clinical microbiology laboratory to be screened for three target antimicrobial-resistant organisms (extended-spectrum ß-lactamase-producing Enterobacterales, carbapenem-resistant Enterobacterales, and mcr-mediated colistin-resistant Enterobacterales), and underwent DNA extraction and shotgun metagenomic sequencing. We profiled metagenomes for taxonomic composition, antibiotic-resistant gene content, and characterised the Escherichia coli population at the strain level. We analysed pre-travel samples to identify the gut microbiome risk factors associated with acquisition of the three targeted antimicrobial resistant organisms. Pre-travel and post-travel samples were compared to identify microbiome and resistome perturbation and E coli strain acquisition associated with travel. FINDINGS: A total of 368 individuals travelled between the required dates, and 296 had DNA extractions available for both before and after travel. 29 travellers were excluded as they had at least one low coverage sample, leaving a final group of 267 participants. We observed a perturbation of the gut microbiota, characterised by a significant depletion of microbial diversity and enrichment of the Enterobacteriaceae family. Metagenomic strain tracking confirmed that 67% of travellers acquired new strains of E coli during travel that were phylogenetically distinct from their pre-travel strains. We observed widespread enrichment of antibiotic-resistant genes in the gut, with a median 15% (95% CI 10-20, p<1 × 10-10) increase in burden (reads per kilobase per million reads). This increase included antibiotic-resistant genes previously classified as threats to public health, which were 56% (95% CI 36-91, p=2 × 10-11) higher in abundance after travel than before. Fluoroquinolone antibiotic-resistant genes were aquired by 97 (54%) of 181 travellers with no detected pre-travel carriage. Although we found that visiting friends or relatives, travel to south Asia, and eating uncooked vegetables were risk factors for acquisition of the three targeted antimicrobial resistant organisms, we did not observe an association between the pre-travel microbiome structure and travel-related antimicrobial-resistant organism acquisition. INTERPRETATION: This work highlights a scale of E coli and antimicrobial-resistant organism acquisition by US travellers not apparent from previous culture-based studies, and suggests that strategies to control antimicrobial-resistant organisms addressing international traveller behaviour, rather than modulating the gut microbiome, could be worthwhile. FUNDING: US Centers for Disease Control and Prevention and National Institute of Allergy and Infectious Diseases.


Subject(s)
Escherichia coli , Gastrointestinal Microbiome , United States , Humans , Escherichia coli/genetics , Gastrointestinal Microbiome/genetics , Travel , Metagenome , Travel-Related Illness , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Microbial , beta-Lactamases/genetics , DNA
6.
Open Forum Infect Dis ; 10(5): ofad194, 2023 May.
Article in English | MEDLINE | ID: mdl-37180588

ABSTRACT

Background: Contaminated healthcare facility wastewater plumbing is recognized as a source of carbapenemase-producing organism transmission. In August 2019, the Tennessee Department of Health (TDH) identified a patient colonized with Verona integron-encoded metallo-beta-lactamase-producing carbapenem-resistant Pseudomonas aeruginosa (VIM-CRPA). A record review revealed that 33% (4 of 12) of all reported patients in Tennessee with VIM had history of prior admission to acute care hospital (ACH) A intensive care unit (ICU) Room X, prompting further investigation. Methods: A case was defined as polymerase chain reaction detection of blaVIM in a patient with prior admission to ACH A from November 2017 to November 2020. The TDH performed point prevalence surveys, discharge screening, onsite observations, and environmental testing at ACH A. The VIM-CRPA isolates underwent whole-genome sequencing (WGS). Results: In a screening of 44% (n = 11) of 25 patients admitted to Room X between January and June 2020, we identified 36% (n = 4) colonized with VIM-CRPA, resulting in 8 cases associated with Room X from March 2018 to June 2020. No additional cases were identified in 2 point-prevalence surveys of the ACH A ICU. Samples from the bathroom and handwashing sink drains in Room X grew VIM-CRPA; all available case and environmental isolates were found to be ST253 harboring blaVIM-1 and to be closely related by WGS. Transmission ended after implementation of intensive water management and infection control interventions. Conclusions: A single ICU room's contaminated drains were associated with 8 VIM-CRPA cases over a 2-year period. This outbreak highlights the need to include wastewater plumbing in hospital water management plans to mitigate the risk of transmission of antibiotic-resistant organisms to patients.

7.
Am J Infect Control ; 51(1): 70-77, 2023 01.
Article in English | MEDLINE | ID: mdl-35909003

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are usually healthcare-associated but are also emerging in the community. METHODS: Active, population-based surveillance was conducted to identify case-patients with cultures positive for Enterobacterales not susceptible to a carbapenem (excluding ertapenem) and resistant to all third-generation cephalosporins tested at 8 US sites from January 2012 to December 2015. Medical records were used to classify cases as health care-associated, or as community-associated (CA) if a patient had no known health care risk factors and a culture was collected <3 days after hospital admission. Enterobacterales isolates from selected cases were submitted to CDC for whole genome sequencing. RESULTS: We identified 1499 CRE cases in 1194 case-patients; 149 cases (10%) in 139 case-patients were CA. The incidence of CRE cases per 100,000 population was 2.96 (95% CI: 2.81, 3.11) overall and 0.29 (95% CI: 0.25, 0.35) for CA-CRE. Most CA-CRE cases were in White persons (73%), females (84%) and identified from urine cultures (98%). Among the 12 sequenced CA-CRE isolates, 5 (42%) harbored a carbapenemase gene. CONCLUSIONS: Ten percent of CRE cases were CA; some isolates from CA-CRE cases harbored carbapenemase genes. Continued CRE surveillance in the community is critical to monitor emergence outside of traditional health care settings.


Subject(s)
Carbapenems , Enterobacteriaceae Infections , Female , United States/epidemiology , Humans , Carbapenems/pharmacology , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae , beta-Lactamases/genetics , Health Facilities , Risk Factors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
8.
Infect Control Hosp Epidemiol ; 44(5): 794-797, 2023 05.
Article in English | MEDLINE | ID: mdl-35166197

ABSTRACT

We reviewed trimethoprim-sulfamethoxazole antibiotic susceptibility testing data among Staphylococcus aureus using 3 national inpatient databases. In all 3 databases, we observed an increases in the percentage of methicillin-resistant Staphylococcus aureus that were not susceptible to trimethoprim-sulfamethoxazole. Providers should select antibiotic regimens based on local resistance patterns and should report changes to the public health department.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , United States , Trimethoprim, Sulfamethoxazole Drug Combination , Staphylococcus aureus , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
9.
Public Health Rep ; 137(2): 203-207, 2022.
Article in English | MEDLINE | ID: mdl-36426725

ABSTRACT

In February 2020, during the early days of the COVID-19 pandemic, 232 evacuees from Wuhan, China, were placed under federal 14-day quarantine upon arrival at a US military base in San Diego, California. We describe the monitoring of evacuees and responders for symptoms of COVID-19, case and contact investigations, infection control procedures, and lessons learned to inform future quarantine protocols for evacuated people from a hot spot resulting from a novel pathogen. Thirteen (5.6%) evacuees had COVID-19-compatible symptoms and 2 (0.9%) had laboratory-confirmed SARS-CoV-2. Two case investigations identified 43 contacts; 3 (7.0%) contacts had symptoms but tested negative for SARS-CoV-2 infection. Daily symptom and temperature screening of evacuees and enacted infection control procedures resulted in rapid case identification and isolation and no detected secondary transmission among evacuees or responders. Lessons learned highlight the challenges associated with public health response to a novel pathogen and the evolution of mitigation strategies as knowledge of the pathogen evolves.


Subject(s)
COVID-19 , Quarantine , United States/epidemiology , Humans , COVID-19/epidemiology , Military Facilities , Pandemics/prevention & control , SARS-CoV-2 , China/epidemiology
10.
Antimicrob Agents Chemother ; 66(9): e0049622, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36066241

ABSTRACT

The CDC's Emerging Infections Program (EIP) conducted population- and laboratory-based surveillance of US carbapenem-resistant Pseudomonas aeruginosa (CRPA) from 2016 through 2018. To characterize the pathotype, 1,019 isolates collected through this project underwent antimicrobial susceptibility testing and whole-genome sequencing. Sequenced genomes were classified using the seven-gene multilocus sequence typing (MLST) scheme and a core genome (cg)MLST scheme was used to determine phylogeny. Both chromosomal and horizontally transmitted mechanisms of carbapenem resistance were assessed. There were 336 sequence types (STs) among the 1,019 sequenced genomes, and the genomes varied by an average of 84.7% of the cgMLST alleles used. Mutations associated with dysfunction of the porin OprD were found in 888 (87.1%) of the genomes and were correlated with carbapenem resistance, and a machine learning model incorporating hundreds of genetic variations among the chromosomal mechanisms of resistance was able to classify resistant genomes. While only 7 (0.1%) isolates harbored carbapenemase genes, 66 (6.5%) had acquired non-carbapenemase ß-lactamase genes, and these were more likely to have OprD dysfunction and be resistant to all carbapenems tested. The genetic diversity demonstrates that the pathotype includes a variety of strains, and clones previously identified as high-risk make up only a minority of CRPA strains in the United States. The increased carbapenem resistance in isolates with acquired non-carbapenemase ß-lactamase genes suggests that horizontally transmitted mechanisms aside from carbapenemases themselves may be important drivers of the spread of carbapenem resistance in P. aeruginosa.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Centers for Disease Control and Prevention, U.S. , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Porins/genetics , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , United States/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism
12.
J Am Med Dir Assoc ; 23(6): 909-916.e2, 2022 06.
Article in English | MEDLINE | ID: mdl-35504326

ABSTRACT

BACKGROUND: Nursing homes (NHs) provide care in a congregate setting for residents at high risk of severe outcomes from SARS-CoV-2 infection. In spring 2020, NHs were implementing new guidance to minimize SARS-CoV-2 spread among residents and staff. OBJECTIVE: To assess whether telephone and video-based infection control assessment and response (TeleICAR) strategies could efficiently assess NH preparedness and help resolve gaps. DESIGN: We incorporated Centers for Disease Control and Prevention COVID-19 guidance for NH into an assessment tool covering 6 domains: visitor restrictions; health care personnel COVID-19 training; resident education, monitoring, screening, and cohorting; personal protective equipment supply; core infection prevention and control (IPC); and communication to public health. We performed TeleICAR consultations on behalf of health departments. Adherence to each element was documented and recommendations provided to the facility. SETTING AND PARTICIPANTS: Health department-referred NHs that agreed to TeleICAR consultation. METHODS: We assessed overall numbers and proportions of NH that had not implemented each infection control element (gap) and proportion of NH that reported making ≥1 change in practice following the assessment. RESULTS: During April 13 to June 12, 2020, we completed TeleICAR consultations in 629 NHs across 19 states. Overall, 524 (83%) had ≥1 implementation gap identified; the median number of gaps was 2 (interquartile range: 1-4). The domains with the greatest number of facilities with gaps were core IPC practices (428/625; 68%) and COVID-19 education, monitoring, screening, and cohorting of residents (291/620; 47%). CONCLUSIONS AND IMPLICATIONS: TeleICAR was an alternative to onsite infection control assessments that enabled public health to efficiently reach NHs across the United States early in the COVID-19 pandemic. Assessments identified widespread gaps in core IPC practices that put residents and staff at risk of infection. TeleICAR is an important strategy that leverages infection control expertise and can be useful in future efforts to improve NH IPC.


Subject(s)
COVID-19 , Humans , Infection Control , Nursing Homes , Pandemics/prevention & control , SARS-CoV-2 , United States
13.
Microb Drug Resist ; 28(4): 389-397, 2022 04.
Article in English | MEDLINE | ID: mdl-35172110

ABSTRACT

Carbapenem-resistant Enterobacterales (CRE) are a growing public health concern due to resistance to multiple antibiotics and potential to cause health care-associated infections with high mortality. Carbapenemase-producing CRE are of particular concern given that carbapenemase-encoding genes often are located on mobile genetic elements that may spread between different organisms and species. In this study, we performed phenotypic and genotypic characterization of CRE collected at eight U.S. sites participating in active population- and laboratory-based surveillance of carbapenem-resistant organisms. Among 421 CRE tested, the majority were isolated from urine (n = 349, 83%). Klebsiella pneumoniae was the most common organism (n = 265, 63%), followed by Enterobacter cloacae complex (n = 77, 18%) and Escherichia coli (n = 50, 12%). Of 419 isolates analyzed by whole genome sequencing, 307 (73%) harbored a carbapenemase gene; variants of blaKPC predominated (n = 299, 97%). The occurrence of carbapenemase-producing K. pneumoniae, E. cloacae complex, and E. coli varied by region; the predominant sequence type within each genus was ST258, ST171, and ST131, respectively. None of the carbapenemase-producing CRE isolates displayed resistance to all antimicrobials tested; susceptibility to amikacin and tigecycline was generally retained.


Subject(s)
Carbapenems , Enterobacteriaceae Infections , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbapenems/pharmacology , Enterobacter , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/epidemiology , Escherichia coli/genetics , Humans , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , United States , beta-Lactamases/genetics
14.
Transpl Infect Dis ; 24(2): e13785, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34989092

ABSTRACT

BACKGROUND: Passive reporting to the Centers for Disease Control and Prevention has identified carbapenemase-producing organisms (CPOs) among solid organ transplant (SOT) recipients, potentially representing an emerging source of spread. We analyzed CPO prevalence in wards where SOT recipients receive inpatient care to inform public health action to prevent transmission. METHODS: From September 2019 to June 2020, five US hospitals conducted consecutive point prevalence surveys (PPS) of all consenting patients admitted to transplant units, regardless of transplant status. We used the Cepheid Xpert Carba-R assay to identify carbapenemase genes (blaKPC , blaNDM , blaVIM , blaIMP , blaOXA-48 ) from rectal swabs. Laboratory-developed molecular tests were used to retrospectively test for a wider range of blaIMP and blaOXA variants. RESULTS: In total, 154 patients were screened and 92 (60%) were SOT recipients. CPOs were detected among 7 (8%) SOT recipients, from two of five screened hospitals: four blaKPC , one blaNDM , and two blaOXA-23 . CPOs were detected in two (3%) of 62 non-transplant patients. In three of five participating hospitals, CPOs were not identified among any patients admitted to transplant units. CONCLUSIONS: Longitudinal surveillance in transplant units, as well as PPS in areas with diverse CPO epidemiology, may inform the utility of routine screening in SOT units to prevent the spread of CPOs.


Subject(s)
Organ Transplantation , beta-Lactamases , Bacterial Proteins/genetics , Hospitals , Humans , Organ Transplantation/adverse effects , Prevalence , Retrospective Studies , Transplant Recipients , beta-Lactamases/genetics
15.
J Clin Microbiol ; 60(3): e0215421, 2022 03 16.
Article in English | MEDLINE | ID: mdl-34985981

ABSTRACT

Carbapenems are antimicrobial drugs reserved for the treatment of severe multidrug-resistant Gram-negative bacterial infections. Carbapenem-resistant organisms (CROs) are an urgent public health threat and have been made reportable to public health authorities in many jurisdictions. Recent reports of CROs in companion animals and veterinary settings suggest that CROs are a One Health problem. However, standard practices of U.S. veterinary diagnostic laboratories (VDLs) to detect CROs are unknown. We assessed the capacity of VDLs to characterize carbapenem resistance in isolates from companion animals. Among 74 VDLs surveyed in 42 states, 23 laboratories (31%) from 22 states responded. Most (22/23, 96%) included ≥1 carbapenem on their primary antimicrobial susceptibility testing panel, and approximately one-third (9/23, 39%) performed phenotypic carbapenemase production testing or molecular identification of carbapenemase genes. Overall, 35% (8/23) of VDLs across eight states reported they would notify public health if a CRO was detected. Most (17/21, 81%) VDLs were not aware of CRO reporting mandates, and some expressed uncertainty about whether the scope of known mandates included CROs from veterinary sources. Although nearly all surveyed VDLs tested for carbapenem resistance, fewer had the capacity for mechanism testing or awareness of public health reporting requirements. Addressing these gaps is critical to monitoring CRO incidence and trends in veterinary medicine, preventing spread in veterinary settings, and mounting an effective One Health response. Improved collaboration and communication between public health and veterinary medicine is critical to inform infection control practices in veterinary settings and conduct a public health response when resistant isolates are detected.


Subject(s)
Anti-Infective Agents , Pets , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Bacterial Proteins/genetics , Carbapenems/pharmacology , Humans , Laboratories , Microbial Sensitivity Tests , United States , beta-Lactamases/genetics
16.
Emerg Infect Dis ; 28(1): 51-61, 2022 01.
Article in English | MEDLINE | ID: mdl-34932447

ABSTRACT

Carbapenem-resistant Pseudomonas aeruginosa (CRPA) producing the Verona integron‒encoded metallo-ß-lactamase (VIM) are highly antimicrobial drug-resistant pathogens that are uncommon in the United States. We investigated the source of VIM-CRPA among US medical tourists who underwent bariatric surgery in Tijuana, Mexico. Cases were defined as isolation of VIM-CRPA or CRPA from a patient who had an elective invasive medical procedure in Mexico during January 2018‒December 2019 and within 45 days before specimen collection. Whole-genome sequencing of isolates was performed. Thirty-eight case-patients were identified in 18 states; 31 were operated on by surgeon 1, most frequently at facility A (27/31 patients). Whole-genome sequencing identified isolates linked to surgeon 1 were closely related and distinct from isolates linked to other surgeons in Tijuana. Facility A closed in March 2019. US patients and providers should acknowledge the risk for colonization or infection after medical tourism with highly drug-resistant pathogens uncommon in the United States.


Subject(s)
Drug Resistance, Multiple, Bacterial , Medical Tourism , Pseudomonas Infections , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins , Carbapenems , Humans , Mexico/epidemiology , Microbial Sensitivity Tests , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , United States/epidemiology , beta-Lactamases/genetics
17.
MMWR Morb Mortal Wkly Rep ; 70(36): 1242-1244, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34499630

ABSTRACT

Wastewater surveillance, the measurement of pathogen levels in wastewater, is used to evaluate community-level infection trends, augment traditional surveillance that leverages clinical tests and services (e.g., case reporting), and monitor public health interventions (1). Approximately 40% of persons infected with SARS-CoV-2, the virus that causes COVID-19, shed virus RNA in their stool (2); therefore, community-level trends in SARS-CoV-2 infections, both symptomatic and asymptomatic (2) can be tracked through wastewater testing (3-6). CDC launched the National Wastewater Surveillance System (NWSS) in September 2020 to coordinate wastewater surveillance programs implemented by state, tribal, local, and territorial health departments to support the COVID-19 pandemic response. In the United States, wastewater surveillance was not previously implemented at the national level. As of August 2021, NWSS includes 37 states, four cities, and two territories. This report summarizes NWSS activities and describes innovative applications of wastewater surveillance data by two states, which have included generating alerts to local jurisdictions, allocating mobile testing resources, evaluating irregularities in traditional surveillance, refining health messaging, and forecasting clinical resource needs. NWSS complements traditional surveillance and enables health departments to intervene earlier with focused support in communities experiencing increasing concentrations of SARS-CoV-2 in wastewater. The ability to conduct wastewater surveillance is not affected by access to health care or the clinical testing capacity in the community. Robust, sustainable implementation of wastewater surveillance requires public health capacity for wastewater testing, analysis, and interpretation. Partnerships between wastewater utilities and public health departments are needed to leverage wastewater surveillance data for the COVID-19 response for rapid assessment of emerging threats and preparedness for future pandemics.


Subject(s)
COVID-19/prevention & control , Pandemics/prevention & control , Public Health Surveillance/methods , SARS-CoV-2/isolation & purification , Wastewater/virology , COVID-19/epidemiology , Centers for Disease Control and Prevention, U.S. , Humans , United States/epidemiology
18.
JAC Antimicrob Resist ; 3(3): dlab137, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34514407

ABSTRACT

BACKGROUND: Historically, United States' carbapenem-resistant Enterobacterales (CRE) surveillance and mechanism testing focused on three genera: Escherichia, Klebsiella, and Enterobacter (EsKE); however, other genera can harbour mobile carbapenemases associated with CRE spread. OBJECTIVES: From January through May 2018, we conducted a 10 state evaluation to assess the contribution of less common genera (LCG) to carbapenemase-producing (CP) CRE. METHODS: State public health laboratories (SPHLs) requested participating clinical laboratories submit all Enterobacterales from all specimen sources during the surveillance period that were resistant to any carbapenem (Morganellaceae required resistance to doripenem, ertapenem, or meropenem) or were CP based on phenotypic or genotypic testing at the clinical laboratory. SPHLs performed species identification, phenotypic carbapenemase production testing, and molecular testing for carbapenemases to identify CP-CRE. Isolates were categorized as CP if they demonstrated phenotypic carbapenemase production and ≥1 carbapenemase gene (bla KPC, bla NDM, bla VIM, bla IMP, or bla OXA-48-like) was detected. RESULTS: SPHLs tested 868 CRE isolates, 127 (14.6%) were from eight LCG. Overall, 195 (26.3%) EsKE isolates were CP-CRE, compared with 24 (18.9%) LCG isolates. LCG accounted for 24 (11.0%) of 219 CP-CRE identified. Citrobacter spp. was the most common CP-LCG; the proportion of Citrobacter that were CP (11/42, 26.2%) was similar to the proportion of EsKE that were CP (195/741, 26.3%). Five of 24 (20.8%) CP-LCG had a carbapenemase gene other than bla KPC. CONCLUSIONS: Participating sites would have missed approximately 1 in 10 CP-CRE if isolate submission had been limited to EsKE genera. Expanding mechanism testing to additional genera could improve detection and prevention efforts.

19.
Ann Intern Med ; 174(11): 1554-1562, 2021 11.
Article in English | MEDLINE | ID: mdl-34487450

ABSTRACT

BACKGROUND: Candida auris, a multidrug-resistant yeast, can spread rapidly in ventilator-capable skilled-nursing facilities (vSNFs) and long-term acute care hospitals (LTACHs). In 2018, a laboratory serving LTACHs in southern California began identifying species of Candida that were detected in urine specimens to enhance surveillance of C auris, and C auris was identified in February 2019 in a patient in an Orange County (OC), California, LTACH. Further investigation identified C auris at 3 associated facilities. OBJECTIVE: To assess the prevalence of C auris and infection prevention and control (IPC) practices in LTACHs and vSNFs in OC. DESIGN: Point prevalence surveys (PPSs), postdischarge testing for C auris detection, and assessments of IPC were done from March to October 2019. SETTING: All LTACHs (n = 3) and vSNFs (n = 14) serving adult patients in OC. PARTICIPANTS: Current or recent patients in LTACHs and vSNFs in OC. INTERVENTION: In facilities where C auris was detected, PPSs were repeated every 2 weeks. Ongoing IPC support was provided. MEASUREMENTS: Antifungal susceptibility testing and whole-genome sequencing to assess isolate relatedness. RESULTS: Initial PPSs at 17 facilities identified 44 additional patients with C auris in 3 (100%) LTACHs and 6 (43%) vSNFs, with the first bloodstream infection reported in May 2019. By October 2019, a total of 182 patients with C auris were identified by serial PPSs and discharge testing. Of 81 isolates that were sequenced, all were clade III and highly related. Assessments of IPC identified gaps in hand hygiene, transmission-based precautions, and environmental cleaning. The outbreak was contained to 2 facilities by October 2019. LIMITATION: Acute care hospitals were not assessed, and IPC improvements over time could not be rigorously evaluated. CONCLUSION: Enhanced laboratory surveillance and prompt investigation with IPC support enabled swift identification and containment of C auris. PRIMARY FUNDING SOURCE: Centers for Disease Control and Prevention.


Subject(s)
Candidiasis/diagnosis , Candidiasis/prevention & control , Subacute Care , Adult , Aged , Aged, 80 and over , California/epidemiology , Candida auris/genetics , Candidiasis/transmission , Female , Humans , Infection Control , Long-Term Care , Male , Microbial Sensitivity Tests , Middle Aged , Patient Discharge , Skilled Nursing Facilities , Whole Genome Sequencing
20.
Emerg Infect Dis ; 27(9): 2475-2479, 2021.
Article in English | MEDLINE | ID: mdl-34424168

ABSTRACT

Reports of organisms harboring multiple carbapenemase genes have increased since 2010. During October 2012-April 2019, the Centers for Disease Control and Prevention documented 151 of these isolates from 100 patients in the United States. Possible risk factors included recent history of international travel, international inpatient healthcare, and solid organ or bone marrow transplantation.


Subject(s)
Bacterial Proteins , beta-Lactamases , Bacterial Proteins/genetics , Gram-Negative Bacteria , Humans , United States/epidemiology , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...